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LE7TER TO THE EDITOR 

A fractal model for the low-field Hall effect at 
three-dimensional percolation threshold 

Takashi Nagatani 
College of Engineering, Shizuoka University, Hamamatsu 432, Japan 

Received 20 January 1986 

Abstract. A fractal model is proposed to determine the critical behaviour of the low-field 
Hall effect in a three-dimensional metal-non-metal composite at the percolation threshold. 
The fractal lattice is constructed to imitate the geometric texture of three-dimensional 
percolation clusters at criticality and to realise the Hall problem on a three-dimensional 
discrete lattice. The exponents describing the power law dependence on scale length of 
the Hall and ohmic conductivities are found. 

Recently, there has been increasing interest in exact mathematical fractals. The main 
reason is that solution of many important equations of physics on these lattices adds 
to our understanding of the geometric and topological properties that are relevant to 
modelling the corresponding physical processes (Mandelbrot 1982, Vicsek 1983, Given 
and Mandelbrot 1983, Ben-Avraham and Havlin 1983, Blumenfeld and Aharony 1985, 
Martin and Keefer 1985). The percolating infinite cluster is one of the most intensively 
studied random fractals (Deutscher et a1 1983, Stauffer 1979,1985, Stanley and Coniglio 
1983, Kirkpatrick 1979, Kapitulnik and Deutscher 1984). Various geometrical models 
have been proposed to imitate the infinite incipient cluster at the percolation threshold 
and it has been of great interest to understand the effects of these different geometries 
on the transport properties near the percolation threshold (Mandelbrot 1984a,b, Man- 
delbrot and Given 1984, Nagatani 1985a,b). 

In the past the Hall effect has been used extensively to investigate the metal-non- 
metal transition in a variety of disordered systems. An eff ective-medium theory ( EMT) 
and a simulation approach have been used to discuss the properties of the Hall effect 
in conductors with macroscopic disorder (Cohen and Jortner 1983a,b, Stroud and Pan 
1979, Shklovskii 1977, Straley, 1980a, b, Bergman et a1 1983). Exact results are known 
for the critical behaviour of Hall conductivity A and Hall coefficient R in two dimensions 
(Shklovskii 1977, Bergman et a1 1983). Nagatani (1986) has proposed a fractal model 
with the ‘self-duality’ property for determining the critical behaviour of the low-field 
Hall effect near the two-dimensional percolation threshold. A number of discussions 
of the critical properties have been given, but there are few reliable calculations of the 
critical properties in three-dimensional systems. 

In this letter we try to determine the critical behaviour of the Hall effect at the 
three-dimensional percolation threshold with the help of a regular fractal. 

In order to determine the critical behaviour of the Hall conductivity near the 
percolation threshold of an isotropic composite, Bergman et al (1983) realised the 
Hall problem on a two-component discrete lattice as follows: each element of the 
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lattice is a triplet of identical conductors with an ohmic conductance u1 or u2 that lie 
along the coordinate axes, and which are electrically unconnected in the absence of 
a magnetic field H (see figure 1 where a centre of triplets is marked by a circle). In 
the presence of an H field taken to lie along the z axis, a Hall current will flow through 
a conductor in the x direction that depends on its Hall conductance ( A 1  or A * )  and 
on the voltage across the y conductor of the same triplet. The two types of triplets 
are placed randomly at all the sites of an FCC lattice, and electrical connections are 
made at the centres of all the unit cell edges as well as the body-centre points (see 
figure 1 where an electrical connection is indicated by a full circle). It is easy to see 
that by making these connections we obtain four simple-cubic, random-bond resistor 
networks that are electrically unconnected (for H = 0) but are correlated with each 
other by virtue of the unconnected triplets used in setting them up. One notes that 
the basic Hall element (given by the triplet in figure 1) has the feature that a Hall 
current will flow through a conducting bond only if there is a potential difference 
along a conducting bond perpendicular to it. This property is essential for a correct 
representation of a continuous random material of either two or three dimensions. 

In order to imitate an infinite cluster in this lattice model of the Hall effect, we 
must construct a regular fractal model with the following properties. (i)  It is composed 
of triplets (shown by figure l (a) ) .  (ii) It consists of four identical lattices. (iii) The 
fractal dimensionalities of the fractal and its backbone are very close to those of the 

( 0 )  i b )  

Figure 1. Schematic drawing of a portion of the random-bond resistor networks used to 
realise the Hall effect in a discrete system in three dimensions. ( a )  A triplet of identical 
conductors with ohmic and Hall conductances. A triplet is each element of the lattices. 
( b )  An FCC lattice of identical but unconnected mutually perpendicular triplets. Electrical 
connection points that lie on the same connected portion of the network are labelled by 
identical letters. Thus the 3D network is composed of four unconnected (but correlated) 
simple-cubic resistor networks (shown by the bold-full, bold-dotted, full and dotted lines). 
The four networks are electrically unconnected in the absence of a magnetic field, but in 
the presence of a magnetic field these are correlated. 
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infinite cluster and its backbone at percolation threshold. The above property (i)  is 
essential for reproducing the correct Hall effect on the discrete lattice. The property 
(ii) is necessary for the symmetry of an infinite cluster for each axis. The property 
(iii) is necessary to imitate the geometric texture of an infinite cluster at the threshold. 
The estimated dimensionalities for the infinite cluster and its backbone are respectively 
given by D = 2.5 and Db= 1.74-2.0 (Stauffer 1985, Hong and Stanley 1983, Herrmann 
and Stanley 1984). 

9 
I 

\ I  

Figure 2. Initiator of the fractal for the infinite cluster. This is composed of four identical 
lattices (shown by bold-full, bold-dotted, full and dotted lines) with the four triplets. 

We construct a fractal with the above properties (i), (ii) and (iii). The initiator 
and the generator of the fractal are respectively shown by figures 2 and 3(a). The 
initiator is composed of four identical lattices (indicated by bold-full, bold-dotted, full 
and dotted lines) with the four triplets. The generator is composed of fifteen triplets 
whose centres are marked by the circles. Its fractal dimension is given by D =log 
15/log 3(-2.46). The dimensionality of its backbone (shown by figure 3(b)) is given 
by &=log 8/log 3(-1.89). The fractal, constructed by the initiator and generator 
(shown by figures 2 and 3(a)), thus has the properties (i), (ii) and (iii). The geneiator 
of the fractal for its backbone (shown by figure 3(b)) is composed of three identical 
lattices (indicated by bold-full, bold-dotted and full lines). By using a natural decima- 
tion procedure, it produces a renormalised triplet, scaled up by a factor b = 3. We 
note that any dangling bonds within the fractal do not contribute to the low-field Hall 
effect because these contribute to the higher-order terms of a magnetic field H rather 
than the first-order term. 

In the presence of an H field taken to lie along the z axis, we calculate the total 
ohmic and Hall conductivities between the endpoints in the x direction (or in the y 
direction), and then derive the exponents describing the power law dependence on 
scale length L of the conductivities. 

In addition to the ohmic conductance a, of each member a of the unit element, 
there is also a Hall conductance Aa and Hall coefficient R,, connected by 

A, = U:R,H for a l H  0 for allH. (1) 
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Figure 3. ( a )  Generator of the fractal for the infinite cluster. This is composed of fifteen 
triplets whose centres are marked by the circles. Its fractal dimension is given by D = log 
15/log 3. The generator consists of the three identical lattices (shown by bold-full, bold- 
dotted and full lines) and a different lattice (shown by dotted lines). ( b )  Generator of the 
fractal for its backbone. This is composed of three identical lattices (indicated by bold-full, 
bold-dotted and full lines). 

The current J, is given by 

Ja = u a  Va - h a  Va x H ( 2 )  

where VaxH is the voltage across another conductor of the same unit element-the 
one that is perpendicular to both a and H. Current conservation at the internal point 
i leads to the following equation for the potentials V,: 

where the first sum over j indicates the summation over the nearest-neighbour sites to 
i, and the second sum over i j x  H represents the summation over another conductor 
of the same unit element as the i j  bond. 

The current, flowing through the renormalised bond in the x direction (or in the 
y direction), is given by 

J, = ( ~ / ~ ) u E , + ( ~ / ~ ) ~ A E , + O ( A ~ )  (4) 

or 

.Iy = ( 2 / 7 ) 0 E ,  - (2 /7)2AEx + O( A ’) 

where we omit the higher-order terms of a magnetic field H other than the first-order 
term. 

The renormalised ohmic and low-field Hall conductances are then given by 

U’= ( 2 / 7 ) u  ( 5 )  
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and 

A ‘ =  (2/7)’A. (6) 

The exponents ( t /  v and T/ U), describing the power law dependence on scale length 
L of the ohmic and Hall conductivities (I,-”” and L-T’y), are given by 

t /  v = 1 - log(d /a) / log  b = 1 +lOg(7/2)/10g 3(-2.14) 

T / V  = 1 -log(h’/A)/log b = 1 +2  log(7/2)/log 3(-3.28). 

(7) 

(8) 

and 

By the use of the estimated connectedness length exponent v = 0.9 (Stauffer 1985), the 
exponents t and T for the ohmic and Hall conductivities are obtained: 

t = 1.92 and T = 2.95. (9) 

Our results may be compared with Bergman’s estimate: t = 1.64 and T = 3.0 which is 
calculated by numerical simulation on 3~ random-bond resistor networks of size 
15 x 15 x 15. The result for t is in good agreement with other more detailed analyses 
(Stauffer 1985). 

In summary, the critical behaviour of the low-field Hall effect in a three-dimensional 
metal-non-metal composite at the percolation threshold has been determined for the 
first time by the use of the fractal model. 
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